Geometry and Topology Preliminary Examination Northwestern University Fall 2015

Answer all of the questions.

1. The real projective plane \mathbb{RP}^2 is the quotient space obtained by identifying antipodes $x \sim -x$ in the unit sphere in \mathbb{R}^3 . Find a simplicial complex homeomorphic to the real projective plane.

Recall that a simplicial complex is a union of simplices such that each each face of a simplex is again a simplex, the n+1 vertices of any *n*-simplex are distinct, and if two simplices have the same set of vertices, they are equal.

2. Calculate the homology and cohomology groups with \mathbb{Z} coefficients of the real projective plane \mathbb{RP}^2 .

3. Let n > 0. Consider the standard covering of \mathbb{RP}^n by open sets $\{U_\alpha\}_{0 \le \alpha \le n}$, where

$$U_{\alpha} = \{ [x_0 : \ldots : x_n] \in \mathbb{RP}^n \mid x_{\alpha} \neq 0 \},\$$

and for each $d \in \mathbb{Z}$ define a line bundle E_d on \mathbb{RP}^n by the transition functions

$$g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathbb{R} \setminus \{0\}, \quad g_{\alpha\beta} = \left(\frac{x_{\beta}}{x_{\alpha}}\right)^{d}.$$

Let now n = 1 and let $L \to \mathbb{RP}^1 \cong S^1$ be any line bundle. Since each U_{α} is contractible, L can be trivialized over U_{α} , and so L is given by transition functions

$$h_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathbb{R}^*.$$

a) Show that if the image of all $h_{\alpha\beta}$ lies in $\mathbb{R}_{>0}$, for $\alpha \neq \beta$, then L is isomorphic to the trivial bundle.

b) Show that if the image of all $h_{\alpha\beta}$ lies in $\mathbb{R}_{<0}$ for $\alpha \neq \beta$, then L is isomorphic to the trivial bundle.

c) Show that if neither of the two previous situations occur, then $L \otimes E_1$ is isomorphic to the trivial bundle.

d) Conclude that the set of isomorphism classes of line bundles over \mathbb{RP}^1 is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. You may use the fact that E_1 is not isomorphic to the trivial bundle. 4. Consider Poincaré disk

$$M = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

with Riemannian metric $g = 4 \frac{(dx)^2 + (dy)^2}{(1-r^2)^2},$

where $r = \sqrt{x^2 + y^2}$.

a) Rewrite this metric in polar coordinates.

b) Recall that the Christoffel symbol of the second kind Γ_{ij}^k is given by the formula

$$\Gamma_{ij}^k = g^{k\ell} \Gamma_{ij\ell}$$

where $\Gamma_{ij\ell}$, the Christoffel symbol of the first kind, is given by the formula

$$\frac{1}{2}(\partial_j g_{i\ell} + \partial_i g_{j\ell} - \partial_\ell g_{ij}).$$

Calculate the Christoffel symbol Γ_{rr}^r

5. Let $M = \mathbb{R}^2 / \mathbb{Z}^2$ be the two dimensional torus, let $\pi : \mathbb{R}^2 \to M$ be the quotient map, let ℓ be the line in \mathbb{R}^2 given by the equation

3x = 7y,

and let $S = \pi(\ell) \subset M$.

a) Show that S is a compact embedded submanifold of M.

b) Find a closed differential 1-form α on M such that its cohomology class $[\alpha] \in H^1(M)$ is Poincaré dual to S.

6. The Brouwer fixed-point theorem states that every continuous map from the *n*-dimensional ball to itself has a fixed point. Prove this theorem as a corollary of the theorem that the homology group $H_{n-1}(S^{n-1})$ is nonzero.